2 00 6 Rigidity of Polyhedral Surfaces
نویسنده
چکیده
We study rigidity of polyhedral surfaces and the moduli space of polyhedral surfaces using variational principles. Curvature like quantities for polyhedral surfaces are introduced. Many of them are shown to determine the polyhedral metric up to isometry. The action functionals in the variational approaches are derived from the cosine law and the Lengendre transformation of them. These include energies used by Colin de Verdiere, Braegger, Rivin, Cohen-Kenyon-Propp, Leibon and Bobenko-Springborn for variational principles on triangulated surfaces. Our study is based on a set of identities satisfied by the derivative of the cosine law. These identities which exhibit similarity in all spaces of constant curvature are probably a discrete analogous of the Bianchi identity.
منابع مشابه
Rigidity of Polyhedral Surfaces
We study the rigidity of polyhedral surfaces using variational principle. The action functionals are derived from the cosine laws. The main focus of this paper is on the cosine law for a non-triangular region bounded by three possibly disjoint geodesics. Several of these cosine laws were first discovered and used by Fenchel and Nielsen. By studying the derivative of the cosine laws, we discover...
متن کاملRigidity of polyhedral surfaces, II
We study the rigidity of polyhedral surfaces using variational principle. The action functionals are derived from the cosine laws. The main focus of this paper is on the cosine law for a non-triangular region bounded by three possibly disjoint geodesics. Several of these cosine laws were first discovered and used by Fenchel and Nielsen. By studying the derivative of the cosine laws, we discover...
متن کاملRigidity and Separation Indices of Graphs in Surfaces
Let Σ be a surface. We prove that rigidity indices of graphs which admit a polyhedral embedding in Σ and 5-connected graphs admitting an embedding in Σ are bounded by a constant depending on Σ. Moreover if the Euler characteristic of Σ is negative, then the separation index of graphs admitting a polyhedral embedding in Σ is also bounded. As a side result we show that distinguishing number of bo...
متن کاملThe Orbit Rigidity Matrix of a Symmetric Framework
A number of recent papers have studied when symmetry causes frameworks on a graph to become infinitesimally flexible, or stressed, and when it has no impact. A number of other recent papers have studied special classes of frameworks on generically rigid graphs which are finite mechanisms. Here we introduce a new tool, the orbit matrix, which connects these two areas and provides a matrix repres...
متن کاملNonrealizable Minimal Vertex Triangulations of Surfaces: Showing Nonrealizability Using Oriented Matroids and Satisfiability Solvers
We show that no minimal vertex triangulation of a closed, connected, orientable 2-manifold of genus 6 admits a polyhedral embedding in R. We also provide examples of minimal vertex triangulations of closed, connected, orientable 2-manifolds of genus 5 that do not admit any polyhedral embeddings. We construct a new infinite family of non-realizable triangulations of surfaces. These results were ...
متن کامل